Removability results for subharmonic functions, for harmonic functions and for holomorphic functions
نویسندگان
چکیده
منابع مشابه
Harmonic morphisms and subharmonic functions
Let M be a complete Riemannian manifold and N a complete noncompact Riemannian manifold. Let φ : M → N be a surjective harmonic morphism. We prove that if N admits a subharmonic function with finite Dirichlet integral which is not harmonic, and φ has finite energy, then φ is a constant map. Similarly, if f is a subharmonic function on N which is not harmonic and such that |df | is bounded, and ...
متن کاملThe Riesz Transform, Rectifiability, and Removability for Lipschitz Harmonic Functions
We show that, given a set E ⊂ Rn+1 with finite n-Hausdorff measure Hn, if the n-dimensional Riesz transform
متن کاملdeveloping a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”
هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...
15 صفحه اولBernstein's polynomials for convex functions and related results
In this paper we establish several polynomials similar to Bernstein's polynomials and several refinements of Hermite-Hadamard inequality for convex functions.
متن کاملA certain convolution approach for subclasses of univalent harmonic functions
In the present paper we study convolution properties for subclasses of univalent harmonic functions in the open unit disc and obtain some basic properties such as coefficient characterization and extreme points.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Matematychni Studii
سال: 2016
ISSN: 1027-4634
DOI: 10.15330/ms.46.2.152-158